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Abstract

Determination of sea surface deformation generated by earthquakes is crucial to the
success of tsunami modeling. Using waveforms recorded at measurement stations and
assuming that the rupture velocity is much faster than the tsunami wave celerity, sea
surface deformation caused by a tsunamigenic earthquake can be inferred through5

an inversion operation using the Green’s function technique. However, this inversion
method for tsunami waveforms possesses a limitation, in that the inverse matrix does
not always exist because of the non-uniqueness of the solution. In addition to the large
number of unknown parameters, which might produce many local optima on the misfit
function measure, the search towards optimality is confined by the uniform distance of10

unit sources used in the regular Green’s function. This study proposes a new method
to both optimize the determination of the unknown parameters and introduce a global
optimization method for tsunami waveform inversion. The method has been tested us-
ing an artificial tsunami source with real bathymetry data. A significant improvement is
achieved by stochastically searching for an optimal distribution of unit source locations15

prior to the inversion.

1 Introduction

Direct observation of sea surface deformation after the occurrence of an earthquake
is still difficult to obtain; therefore, its estimation is often performed by consideration
of relevant seismic information or the hydrodynamic response of the sea determined20

from recorded tsunami waveforms. One of the most frequently used methods for de-
termining sea surface deformation is to presume it from a fault model (Mansinha and
Smylie, 1971; Okada, 1985). A more realistic approach was first proposed by Satake
(1987) who analyzed recorded waveforms to infer earthquake source parameters or
particularly, coseismic slip, using the Green’s function technique. Even though the fault25

model is still required, the division of a fault into smaller sub-faults allows the slip to
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be estimated in a heterogeneous manner, which leads to better approximation of sea
surface deformation. A simpler method was actually introduced earlier by Aida (1972)
for which no prior assumption of a fault model was needed. This study is in line with
that of Aida because we are more interested in estimating sea surface deformation
than a slip on the fault plane. The motivation behind this is that tsunami excitation can5

sometimes occur as a result of various factors that are independent of the associated
seismic characteristics (Geist, 2002).

More recently, several studies using tsunami waveform inversion to estimate sea
surface deformation without fault model assumptions have been widely developed.
The basic premise is to replace the fault model by an auxiliary basis function on unit10

sources, which is equivalent to the sub-fault approach by Satake (1987). For instances,
Baba et al. (2005) used a simplified fault model by disregarding actual earthquake pa-
rameters to produce the initial profile on each unit source, whereas Satake et al. (2005)
proposed a more direct approximation using a pyramidal shape with a flat top. Other
studies by Liu and Wang (2008) and Saito et al. (2010) demonstrated attempts to15

use Gaussian function, whereas Wu and Ho (2011) adopted a top-hat small unit
source to represent the initial profile. The same approach was proposed by Tsushima
et al. (2011) and Yasuda and Mase (2013) for the more practical purpose of a tsunami
early warning system.

Tsunami waveform inversion sometimes falls into an ill-posed problem, in which20

small errors in the observed waveforms are exceptionally amplified in the solution.
Therefore, both the uniqueness and the stability of solutions are sometimes difficult to
attain without appropriate treatments. Koike et al. (2003) suggested reducing the un-
known parameters using the wavelet base to guarantee the uniqueness of the solution.
However, they found later that the selection of the wavelet base was not straightfor-25

ward. Another effort to overcome the issue was discussed by Voronina (2011). The
study promoted a method to control numerical stability for the ill-posed problem in
tsunami waveform inversion by means of singular value decomposition and r-solutions
techniques. In this paper, we proposed a new approach to tackle the same problem by
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determining the optimal position or spatial distribution of unit sources located around
the tsunami source or epicenter. A Genetic Algorithm (GA) as a global optimization
method, combined with a Pattern Search (PS) method, is employed to search the men-
tioned positions prior to the inversion. As the selected positions are probably located in
between the initial unit sources, interpolations are performed during the optimization.5

Therefore, the Green’s function evolves dynamically at each generation of the GA and
PS iteration.

2 Inversion method

Generally, the characteristics of tsunami propagation in deep water are linear. Accord-
ing to Satake (1987), even in shallow coastal areas, the first leading waves recorded at10

coastal tide gauges are still well simulated by the linear long wave model. Therefore,
a typical linear non-dispersive shallow water equation is used in the forward modeling
to compute time histories of sea surface elevation at the specified observation points:{
∂V
∂t = −g∇η
∂η
∂t = −∇ · {(d +η)V }

, (1)
15

where η is the water elevation of the tsunami, V (u,v) is the depth-averaged horizontal
fluid velocity vector, d is the water depth, and g is gravitational acceleration. Equa-
tion (1) is completed with two types of boundary conditions, as follows:{
V ·n = g

c

V ·n = 0
, (2)

20

where c =
√
gh is the wave speed and n is the unit vector normal to the boundary. The

upper and lower expression in Eq. (2) represent open and closed boundary respec-
tively.
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The Green’s function Gi (x,y ,t) indicating the recorded synthetic waveforms at a lo-
cation (x,y) corresponding to the i th unit sources is then constructed. The total sea
surface fluctuations at (x,y ,t) can be expressed as:

η(x,y ,t) =
i=N∑
i=1

wiGi (x,y ,t), (3)

where wi is the weighting factor for each unit source or the unknown parameters to5

be determined by the inversion and N is the number of the unit source. Equation (3) is
developed based on the assumption of linear superposition considering the nonlinearity
for tsunamis in ocean basins to be small, such that it can be neglected (Liu and Wang,
2008). In vector notation, Eq. (3) can be reformulated as:

η =wG. (4)10

Based on the least squares method, the vector of the unknown parameters w can be
acquired by solving the following inverse equation:

w = (GTG)−1GTη. (5)

3 Global optimization method

The ultimate purpose of a global optimization method is to find the extreme value of15

a given non-convex function in a certain feasible region. Following the growth of com-
puter science, new types of optimization based on natural processes and artificial in-
telligence have been developed extensively and used by scientific and engineering
communities. The reason for this is that the new optimization methods possess the
interesting feature of being able to avoid local optimum solutions, which is something20

classical methods fail to do.
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The use of global optimization methods in tsunami waveform inversion is not
new, relevant discussions can be found in Piatanesi and Lorito (2007) and Romano
et al. (2010). They used a simulated annealing technique to solve the inverse prob-
lems. Here, we proposed a different algorithm based on a hybrid optimization of GA
and PS. The hybrid technique is preferred because global optimization methods, such5

as GA, are capable of exploring broader search space, but not as good in fine tun-
ing the approximation of the expected solution. Therefore, PS is employed as a local
search algorithm to locate other nearby solutions that could possibly be better than the
result of the previous search by GA (Payne and Eppstein, 2005; Costa et al., 2010).

The hybrid algorithm proposed in this study works by simply treating the output of10

the GA optimization result as the initial condition for the PS optimization. The technique
is proven effective even though more fitness function evaluation is required; hence, it
costs extra computational efforts. However, parallelization of either GA or PS can be
easily implemented to expedite the computing time and gain substantial performance
enhancement.15

The formulation of an optimization problem can be expressed as:

min
x∈X

f (x), (6)

where x ∈ X is the vector of design parameters, f : X →R is the cost function, and
X ⊂Rn is the constraint set or bounds that can be defined as:

X .
={x ∈Rn|l i ≤ xi ≤ ui , i ∈ {1, . . . ,n}}, (7)20

with −∞≤ l i ≤ ui ≤∞, for all i ∈ {1, . . . ,n}, where l and u are the lower and upper
bounds, respectively.

3.1 Genetic algorithm

GA is an optimization method that searches for an optimal value of a complex function
by adopting the process of natural evolution (Goldberg, 1989). It can be categorized as25
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a type of stochastic optimization method and as a part of artificial intelligence. In GA,
the model parameters or decision variables in the optimization are first transformed
into a chromosome-like data structure that later evolves to form a better individual. The
most common representation of design parameters in GA, as used in this study, is their
encoding into a binary string. There are three basic genetic operators in GA: selection,5

crossover, and mutation.
In our experiment, we develop a GA model with two different design parameters.

First, we use GA to search the water elevation of each unit source without including
a search of the optimum locations, i.e., similar to that of the ordinary least squares
method. The lower (l ) and upper (u) bounds of X are set to finite, specified, plausible10

values of subsidence and uplift of the water surface, respectively. Second, we use
GA to search the optimal location of unit sources, while the initial water elevation is
calculated using the least squares inversion. The area is bounded according to the
spatial distribution of the initial unit sources or the inverse region used for the Green’s
function construction. Accordingly, having Λ as the constraint or the inverse region, all15

X are computational grids of the forward model that is an element of Λ∩X .
We denote k ∈N as the generation number, A ∈N as the population size, xk ∈ XA as

the A individuals in the kth generation, χk ∈ BA as the binary representation of xk , and
χk,i denotes the i th element of χk for i ∈ {1, . . . ,A}, which is a binary representation of
an individual in Rn. The step-by-step operation of the GA is described in the following20

(Wetter and Wright, 2003):

Step (1): Randomize the initial population χ0 ∈ BA of A randomly generated indi-
viduals. Set B to contain all elements of Λ∩X . Then, evaluate all xk according
to the specified cost function; thus, a fitness function Θ : N×BA →RA computes
a fitness value of xk .25

Step (2): Select a pair of individuals with the selection function ϑ : N×BA → B2.
Individuals with better fitness values have a higher probability of being selected.
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Step (3): Swap the bits (genes) between the selected individuals (chromosomes)
to produce new offspring, ϕ : N×B2 × [0,1] → B2 with the crossover probability
pr ∈ [0,1].

Step (4): The final genetic operation is termed mutation and aims to maintain
genetic diversity. The mutation function ψ : N×B× [0,1] → B alters a bit on indi-5

viduals from its initial state.

3.2 Pattern search

Similar to GA, PS is an optimization method that does not require the gradient
(derivative-free) of the problem to be optimized. The method was first introduced by
Hooke and Jeeves (1961). Later, Torczon (1997) conducted studies to prove the con-10

vergence of PS using the theory of positive bases. The algorithm of PS used in this
study is similar to that of Wetter and Write (2003), while the design parameters are
identical to the GA optimization.

For the same optimization problem as formulated in Eq. (6), the algorithm searches
a lower cost function value than f (xk), where xk ∈ X denotes the current iterate and15

k ∈N denotes the iteration number. The search takes place on the points in the set

γk
.
=
{
x ∈ X

∣∣x = xk ±∆ks
iei , i ∈ {1, . . . ,n}

}
, (8)

where ∆k > 0 is the mesh size factor, s ∈Rn is a fixed parameter to scale the design pa-
rameters, and e is the unknown approximation error. The rule to select a finite number
of points in X on a mesh can be defined by:20

M(x0,∆k)
.
=
{
x+m∆ks

iei
∣∣ i ∈ {1, . . . ,n},m ∈ Z

}
, (9)

where x0 ∈ X is the initial iterate.
The overall procedures of PS optimization can be elaborated as follows:
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Step (1): Initialize x0 ∈ X and ∆0 > 0, for which in our case, x0 is obtained from
the GA’s output.

Step (2): If f (x′) < f (xk) for some x′ ∈ (x0,∆k), then set xk+1 = x
′ and ∆k+1 = ∆k .

Step (3): If f (x′) ≥ f (xk), test all points in γk with xk as a minimizer by setting
xk+1 = xk and ∆k+1 =

∆k
2 .5

The search should continue until the mesh size is small enough or equal to the user-
specified threshold.

4 Numerical experiments

We have conducted numerical experiments using an artificial tsunami source propa-
gated on an actual bathymetry profile. An area extending from 140–145◦ E and 35–10

41◦ N is chosen as the domain of interest. The selected domain resembles that used
in most studies of tsunami waveform inversion for the 2011 Tohoku tsunami. The res-
olution of the numerical model is 1 arc minute, which is consistent with the resolution
of the bathymetry data obtained from the ETOPO1. ETOPO1 is a global relief model of
the earth’s surface, which includes ocean bathymetry, available from the National Geo-15

physical Data Center of the National Oceanic and Atmospheric Administration (Amante
and Eakins, 2009). There are eight artificial observation stations associated with the
actual location of gauges within the study area. The tsunami source is divided into
28 unit sources that are distributed uniformly around the actual epicenter of the 2011
Tohoku tsunami (Fig. 1).20

4.1 Cost function

The selection of a cost function or misfit function is essential because it directs the fate
of the optimization towards the optimal solution. Here, we use a combination of root
mean square error (RMSE) and Pearson correlation coefficient (r). While the RMSE is
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sensitive to amplitude matching, the correlation coefficient is more sensitive to phasing
between the compared series (Barnston, 1992). The RMSE serves to aggregate the
individual differences of data points into a single measure of predictive power, which is
defined as:

RMSE =

√√√√1
n

n∑
i=1

(di − yi )2, (10)5

where y is the predicted value by the model, d is the measurement data for each i th
data point, or in our case, the waveform generated by the artificial tsunami source, and
n is the total number of data. The Pearson correlation coefficient is defined as a division
of the covariance of the two variables by the product of their standard deviations:

r =

n∑
i=1

(
di −d

)
·
(
yi − y

)
√

n∑
i=1

(
di −d

)2
·
n∑
i=1

(
y − y

)2

, (11)10

where d and y represent the means of d and y , respectively. The correlation or rele-
vance of the data is measured using the value R = 0.5(r +1) to avoid negative values
in the case of a decreasing linear relationship between the compared series.

The fitness evaluation is subject to noise from various factors that might lead the
optimization towards unexpected solutions. The easiest technique to overcome such15

problems is by means of explicit averaging over a number of samples to smooth the
cost function (Jin and Branke, 2005). As the best solution or closest fit is indicated by
RMSE → 0 and R→ 1, the final cost function is a summation of the mean of the tth
sample over the time window T of Eqs. (10) and (11), which can be written as:

E =
N∑
k=1

[
1
T

T∑
t=1

RMSEt + (1−Rt)
]
k

, (12)20
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where k denotes the respective time window and N is the total number of windows.

4.2 Basis function

A Gaussian shape with 1 m amplitude is used as the basis function for each unit source
(Liu and Wang, 2008). Providing ai as the amplitude of the i th unit source with the
centroid positions of xi and yi , the basis function can be written as:5

zi (x,y) = aie
− (x−xi )

2+(y−yi )
2

2σ2 , (13)

where zi (x,y) is the initial water surface corresponding to the i th unit source, x and
y are the locations of computational grids, and σ is the spread of the blob with
a length of 40 km (Fig. 2). The specified length should satisfy the long wave assumption
(h/L < 0.05), i.e., the wavelength should be greater than 20 times the average water10

depth.

4.3 Model development

For the first design parameters, the optimization is performed merely to search the wa-
ter elevation or initial amplitudes of each unit source. For this case, the Green’s function
is constructed based on the initial 28 unit sources, separated by a uniform distance of15

60 km, which is identical to that used in the least squares inversion. Hereafter, the first
model will be termed the Genetic Algorithm Pattern Search for uniform source distribu-
tion (GAPSu). The purpose of this model is simply to compare the performance of the
proposed global optimization method with the traditional least squares method in the
same model design and environment.20

The second design parameters aim to find the optimal locations of unit sources that,
at the initial state, are distributed randomly around the tsunami source. The second
model will be termed the Genetic Algorithm Pattern Search for random source distri-
bution (GAPSr). In the GAPSr model, the amplitudes are computed using the least
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squares inversion and therefore, the second model is actually a combination of a de-
terministic and stochastic optimization. However, the selected source locations might
not lay precisely in the initial 28 unit sources and thus, interpolation is required to
produce the sea surface fluctuations at the observation stations. Consequently, in the
GAPSr model, the Green’s function evolves during the optimization. Nearest neighbor-5

weighted interpolation is performed for estimating the phases and amplitudes of the
waveforms originating from the selected locations based on the four nearest unit
sources. An example of the interpolation results, complete with statistical evaluations
in terms of RMSE and r , is shown in Fig. 3. Despite the satisfying results, based on
the measure of fitness shown by the interpolation method (overall RMSE< 0.048 m10

and r > 0.966), the small errors might be amplified in the solution because of the ill-
posed problem. Consequently, further improvements should be made to suppress the
generated errors.

An artificial tsunami source is used to test our method (Fig. 4a). It is generated from
a superposition of unit sources with random amplitudes and positions located inside15

the inverse region. The approximation of this initial profile is performed using uncon-
strained, traditional, least squares inversion, GAPSu, and GAPSr. However, GAPSr is
the most important part in this study and therefore, we focus our discussion on the
GAPSr model. The development of the GAPSr model can be summarized as follows:

1. Construct the initial Green’s function.20

2. Initialize the GAPSr model by randomly distributing the unit source locations. The
search of the optimal location is bounded by the area of the inverse region.

3. Perform interpolation and update the Green’s function.

4. Evaluate the fitness by performing the least squares inversion.

5. After reaching the stopping criteria, the forward numerical modeling is run again25

for each of the optimized unit sources to avoid errors generated from the interpo-
lation result. Subsequently, the inversion is performed for the final time.
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5 Results and discussion

The GAPSu model yields a slightly better fit of waveforms compared with the least
squares method (Table 1). This means that the global optimization method locates
a better minimum value in the cost function, which is situated beyond the reach of
the least squares method. However, the slight refinement by the GAPSu model over5

the least squares method makes it difficult to gauge the benefits of employing the
method. This should not be a surprise because the model is applied to determine the
coefficients in a linear system, which is relatively easy to solve using a conventional
method. Moreover, the waveforms used to invert the initial sea surface deformation are
generated from an artificial tsunami source instead of real measurements. Therefore,10

the linearity is well conserved and thus, the use of more advanced methods becomes
redundant and unnecessary. In the study by Piatanesi and Lorito (2007), a global op-
timization method was successfully promoted for the case of tsunami waveform inver-
sion. This was because the optimization method was applied to a nonlinear inverse
problem of actual measurement data. Accordingly, the appraisal of such a method can15

be clearly defined.
Spurious uplifts and subsidence of the water surface profile are generated in both

the least squares and GAPSu model results (see Fig. 4b and c). One may argue that
the specified spatial resolution of the unit sources is too coarse to represent the com-
plete form of the target source. A denser distribution of unit sources should improve the20

results; however, it might also introduce other problems. A large number of model pa-
rameters (unknown parameters), which are proportional to the degrees of freedom in
the optimization, are liable to cause the solution to become easily entrapped in a local
optimum. Without a smoothing constraint, the result of the tsunami waveform inversion
might be bumpy and non-physical, especially for cases with high spatial resolution (Wu25

and Ho, 2011). In other studies on tsunami waveform inversion by Baba et al. (2005)
and Wu and Ho (2011), an equality constraint was imposed to maintain the smooth-
ness of the inverted parameters to satisfy the long wave assumption, while by Saito
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et al. (2010) the constraint was used to obtain stable solutions. However, such con-
straint might restrict the exploration throughout the feasible search space and render
the discovery of an optimum solution more difficult. Another plausible explanation for
the unsatisfactory results of the least squares and GAPSu model is simply that the uni-
form distance of the unit sources confines the search for optimality. This can be proven5

by the result of the GAPSr model, for which the same number of model parameter (28
unit sources) with random locations yields a much better estimation.

The different design parameters in the GAPSr model have considerably improved
the inversion accuracy. For instance, at Gauge 1, where the best fit of the waveform
is attained, the measurement of accuracy as RMSE is 0.0260, 0.0256, and 0.0094 m,10

and as r is 0.9973, 0.9974, 0.9996, for the least squares, GAPSu, and GAPSr models,
respectively (Table 1). For further qualitative or visual assessments, comparisons of
time series of the waveforms at each gauge are presented in Fig. 5. In addition, sta-
tistical evaluation results for the waveforms at all gauges are shown by scatter plots
in Fig. 6. Overall, the statistical analyses on the waveforms suggest that the GAPSr15

model shows very good agreement with the target. These results conform to the in-
verted sea surface deformation resulted by the GAPSr model, which can be seen in
Fig. 3d. The random location of the unit sources allows the approximation to capture
the exact profile of the target source. Other than this, despite no smoothing constraint
being used, the inverted sea surface deformation remains smooth and coherent.20

The search for the optimal locations of the unit sources allows the least squares
method to find the unique and optimal solution. Such an approach is difficult to achieve
deterministically using conventional gradient methods, because there is the possibility
that the constructed design parameters in the GAPSr model produce a discontinuous
or non-differentiable error surface owing to the random characteristics exhibited by the25

artificial tsunami source (target source). The same characteristic is very likely to occur
in nature. A high degree of uncertainty has been observed in tsunami sources leading
to significant variations in the nearshore tsunami amplitude (Geist, 2005). Therefore,
the use of the model in real case applications is encouraged to reveal the underlying
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dynamics in tsunami generation. However, as with typical stochastic methods, the pro-
posed model cannot ensure a constant optimization response time. The solution and
convergence are strongly dependent on the random initial state.

6 Conclusions

Estimations of tsunami sea surface deformation using a global optimization method5

with a stochastic nature have been conducted. Our numerical experiments using the
GAPSu model revealed that the use of such methods for a linear system with stan-
dard design parameters, as in ordinary tsunami waveform inversions, is redundant and
promotes trivial improvements. In contrast, the different design parameters in our pro-
posed method (GAPSr), which was applied to determine the optimum location of the10

unit sources prior to the inversion, demonstrated considerable improvements in the ac-
curacy. The random location of unit sources permitted the inversion to produce a more
precise approximation of the initial sea surface deformation without violating the gen-
eral assumption of long wave theory.

The involvement of stochastic processes in the optimization increased the ability to15

reveal uncertainties in the tsunami source, which are difficult to discern using deter-
ministic approaches. However, as the signature of typical stochastic optimizations, the
optimization response time is erratic because of the strong dependency on the initial
state. Using a current standard desktop computer, the required computing time varied
from 5 to 10 min. Thus, a more sophisticated computer would be needed to ensure20

the effectiveness of the method when applied in a real-time application. Nevertheless,
the results have demonstrated the efficacy of the method for post-event studies of
tsunamis, because it can provide better estimations of the coseismic sea surface de-
formation compared with traditional tsunami waveform inversion methods.
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Table 1. Summary of statistical evaluations based of the proposed cost function.

Station
Least squares GAPSu GAPSr

RMSE r RMSE r RMSE r

Gauge 1 0.0260 0.9973 0.0256 0.9974 0.0094 0.9996
Gauge 2 0.0375 0.9876 0.0375 0.9877 0.0099 0.9992
Gauge 3 0.0822 0.9744 0.0792 0.9761 0.0250 0.9976
Gauge 4 0.0646 0.9809 0.0643 0.9811 0.0203 0.9982
Gauge 5 0.0600 0.9829 0.0591 0.9835 0.0180 0.9984
Gauge 6 0.0659 0.9854 0.0653 0.9857 0.0241 0.9981
Gauge 7 0.0937 0.9954 0.0940 0.9954 0.0417 0.9992
Gauge 8 0.0354 0.9879 0.0346 0.9885 0.0114 0.9987
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 1 

 2 

Figure 1. Study area and bathymetry profile. Red dots indicate unit sources located throughout 3 

the inverse region. Green triangles with numbers are artificial observation stations. 4 

5 

Figure 1. Study area and bathymetry profile. Red dots indicate unit sources located throughout
the inverse region. Green triangles with numbers are artificial observation stations.
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Figure 2. Gaussian basis function. 3 

  4 

Figure 2. Gaussian basis function.
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Figure 3. Waveform interpolation. Left-hand figure shows selected location of a unit source 2 

indicated by a black square. Blue dots represent the four nearest unit sources used in the 3 

interpolation. Right-hand figures are comparisons of waveforms between numerical model 4 

(solid black line) and interpolation (dashed red line) at the artificial gauges. 5 
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  7 

Figure 3. Waveform interpolation. Left-hand figure shows selected location of a unit source
indicated by a black square. Blue dots represent the four nearest unit sources used in the in-
terpolation. Right-hand figures are comparisons of waveforms between numerical model (solid
black line) and interpolation (dashed red line) at the artificial gauges.
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 1 

Figure 4. Sea surface deformation. Gray dots indicate the centroid of unit sources. (a) Artificial 2 

tsunami source as the target to be approximated, (b) inverted source using least squares method, 3 

(c) GAPSu model, (d) GAPSr model. 4 

  5 

Figure 4. Sea surface deformation. Gray dots indicate the centroid of unit sources. (a) Artifi-
cial tsunami source as the target to be approximated, (b) inverted source using least squares
method, (c) GAPSu model, (d) GAPSr model.
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 1 

Figure 5. Comparison of waveforms at Gauges. Gray bar above the time axis indicates the time 2 

range for the inversion. 3 

  4 

Figure 5. Comparison of waveforms at Gauges. Gray bar above the time axis indicates the
time range for the inversion.
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 1 

Figure 6. Scatter plots of each inversion method with respect to the waveforms of the target 2 

source at all gauges. 3 

  4 

Figure 6. Scatter plots of each inversion method with respect to the waveforms of the target
source at all gauges.
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